Meganeura was a gigantic primitive dragonfly with a wingspan of over two feet (maybe larger!). It flew to hunt flying insects above tropical forests and had swiveling multi-faceted eyes like headlamps which were quick to spot movement and sharp enough to allow it to pounce on flying prey. Meganeura flew by beating two pair of wings stiffened by ‘veins’. It dashed to and fro in forests, changing speed and direction almost instantly, grabbing insects with its legs and bringing them up to the mouth to feed. Meganeura itself were around in the late Carboniferous period (355-295 million years ago), but not in either the Jurassic or the Cretaceous period. However, there were still large dragonflies in both these periods. The present day dragonflies are descended from these.

Titanosaurs were the largest animals ever to roam on land; they were sauropod dinosaurs that survived to the end of the Cretaceous period (most sauropods went extinct at the end of the Jurassic period). Titanosaurs grew to sizes far in excess of their earlier relatives; hence they are named after the mythological Titans, who were Gods of ancient Greece. The biggest Titanosaur that we can factually estimate the size is Argentinosaurus, it grew up to 114 feet 9 inches in length! Titanosaurs discovered in Australia include Wintonotitan Wattsii and Diamantinasaurus Matildae.

The Leaellynasaura is one of many dinosaurs whose partial remains have been dug (and blasted) out of the solid rocks of Dinosaur Cove in the south east of Australia. Evidence of Leaellynasaura is known from a well-preserved skull. This dinosaur was a small turkey-sized herbivorous Ornithopod. In early Cretaceous times they resided in areas of Australia that were well within the Antarctic Circle, where the climate was extreme with very limited sunlight for many months of the year. Its skull has unusually large eye-sockets suggesting that Leaellynasaura adapted to the long winter darkness of the Antarctic, which therefore implies that it could withstand low, perhaps even sub-zero temperatures. To do this, it would have needed some way of generating body heat, which some paleontologists have taken as evidence that dinosaurs were in fact warm-blooded.
DO YOU HAVE A FAVORITE DINOSAUR?
DRAW YOUR FAVORITE DINOSAUR OR FIND OUT A NEW FACT ABOUT IT.

MY FAVORITE DINOSAUR IS:

I JUST LEARNED THAT...